Search results for "substituent effect stabilization energy"
showing 5 items of 5 documents
On the relations between aromaticity and substituent effect
2019
Aromaticity/aromatic and substituent/substituent effects belong to the most commonly used terms in organic chemistry and related fields. The quantitative description of aromaticity is based on energetic, geometric (e.g., HOMA), magnetic (e.g., NICS) and reactivity criteria, as well as the properties of the electronic structure (e.g., FLU). The substituent effect can be described using either traditional Hammett-type substituent constants or characteristics based on quantum-chemistry. For this purpose, the energies of properly designed homodesmotic reactions and electron density distribution are used. In the first case, a descriptor named SESE (energy stabilizing the substituent effect) is o…
Classical and reverse substituent effects in meta- and para-substituted nitrobenzene derivatives
2017
Electron-accepting properties of the nitro group were studied in a series of meta- and para-X-substituted nitrobenzene derivatives (X = NMe2, NH2, OH, OMe, CH3, H, F, Cl, CF3, CN, CHO, COMe, CONH2, COOH, COCl, NO2, NO). For this purpose Hammett-like approaches were applied based on quantum chemistry modeling; the B3LYP/6-311++ G(d,p) method was used. The substituent effect (SE) was characterized by the mutually interrelated descriptors: the charge of the substituent active region, cSAR(X), and substituent effect stabilization energy, SESE, as well as substituent constants, σ. Classical SE is realized by dependences of the structural parameters of the nitro group (ONO angle and NO bond lengt…
Substituent effects of nitro group in cyclic compounds
2020
AbstractNumerous studies on nitro group properties are associated with its high electron-withdrawing ability, by means of both resonance and inductive effect. The substituent effect of the nitro group may be well described using either traditional substituent constants or characteristics based on quantum chemistry, i.e., cSAR, SESE, and pEDA/sEDA models. Interestingly, the cSAR descriptor allows to describe the electron-attracting properties of the nitro group regardless of the position and the type of system. Analysis of classical and reverse substituent effects of the nitro group in various systems indicates strong pi-electron interactions with electron-donating substituents due to the re…
The substituent effect of π-electron delocalization in N-methylamino-nitropyridine derivatives: crystal structure and DFT calculations
2020
AbstractThe crystal and molecular structures of 3-(N-methylamino)-2-nitropyridine, 5-(N-methylamino)-2-nitropyridine and 2-(N-methylamino)-5-nitropyridine have been characterized by X-ray diffraction. To perform conformational analysis, the geometries of the compounds as well as their conformers and rotamers were optimized at the B3LYP/6-311++G(3df,3pd) level. The resulting data were used to analyze the π-electron delocalization effect in relation to the methylamino group rotation in ortho-, meta- and para-substitution positions. Quantitative aromaticity indices were calculated based on which we estimated the electronic structures of the analyzed compounds. The substituent effect of the met…
How far the substituent effects in disubstituted cyclohexa-1,3-diene derivatives differ from those in bicyclo[2.2.2]octane and benzene?
2018
Substituents effects in cyclic diene derivatives are studied using quantum chemical modeling and compared to the corresponding effects in aromatic (benzene) and fully saturated (bicyclo[2.2.2]octane) compounds. In particular, electronic properties of the fixed group Y in a series of 3- and 4-X-substituted cyclohexa-1,3-diene-Y derivatives (where Y = NO2, COOH, COO− OH, O−, NH2, and X = NMe2, NH2, OH, OMe, Me, H, F, Cl, CF3, CN, CHO, COMe, CONH2, COOH, NO2, NO) are examined using the B3LYP/6-311++G(d,p) method. For this purpose, quantum chemistry models of the substituent effect: cSAR (charge of the substituent active region) and SESE (substituent effect stabilization energy) as well as trad…